
Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
A Three-Layer Architecture for E-Contract Enforcement
in an E-Service Environment

Dickson K.W. Chiu1, S.C. Cheung2, Sven Till2
1Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, HK

2Department of Computer Science, Hong Kong University of Science and Technology, Kowloon, HK
email: kwchiu@acm.org, {scc,till}@cs.ust.hk

Abstract

In an e-service environment, contracts are important for
attaining business process interoperability and enforcing
their proper enactment. An e-contract is the computerized
facilitation or automation of a contract in a cross-
organizational business process. We find that e-contract
enforcement can be divided into multiple layers and
perspectives, which has not been adequately addressed in
the literature. This problem is challenging as it involves
monitoring the enactment of business processes in
counter parties outside an organization’s boundary. This
paper presents an architecture for e-contract enforcement
with three layers, viz., document layer, business layer,
and implementation layer. In the document layer,
contracts are composed of different types of clauses. In
the business layer, e-contract enforcement activities are
defined through the realization of contract clauses as
business rules in event-condition-action (ECA) form. In
the implementation layer, cross-organizational e-contract
enforcement interfaces are implemented with
contemporary Enterprise Java Bean and Web services.
We present a methodology for the engineering of e-
contracts enforcement from a high-level document-view
down to the implementation layer based on this
architecture, using a supply-chain example. As a result, e-
contracts can be seamlessly defined and enforced.
Conceptual models of various layers are given in the
Unified Modeling Language (UML).

1. Introduction
The Internet has now become a global common

platform where organizations and individuals
communicate with each other to carry out various
commercial activities and to provide value-added
services. The term “e-service” refers to a service provided
over the Internet. The wide adoption of e-services,
however, poses a challenging problem to the enforcement
of contracts across organizations. This is because an
architecture that allows an organization to control or

m
g

m
i
e
b
b
t
s
m
t
t
o
N
d
e
l
e

c
p
c
b
t
a
E
w
c
c
b

f

 0-7695-1874-5/0
onitor the business processes of its counter-parties is not
enerally available.

A contract is a binding agreement between two or
ore parties, defining the set of obligations and rewards

n a business process. An e-contract is a contract in
lectronic format, regulating cross-organizational
usiness processes over the Internet. As e-services
ecome more popular, widespread use of e-contracts in
he business world is expected. The ability of an e-service
ystem to readily create e-contracts with enforcement
easures will soon become a critical success factor for

he provision of e-services. This is particularly applicable
o standard business interactions that could take place
ver the Internet, such as the purchase and sale of goods.
ew e-contracts for these business interactions can be
efined based on standard contract templates, so that the
ffort in development and support of the contract’s whole
ifecycle (such as negotiation, enactment and
nforcement) can be streamlined and reused.

Specific business interactions not covered by the
lauses found in standard contract templates can be
rovided as contract variations or contract escalations. A
ontract template is the reference document that forms the
asis on which a new contract is negotiated. A contract
emplate consists of a number of contract clauses, each
ddressing a specific concern in the business interaction.
ach contract clause contains a set of template variables
hose values are to be negotiated in order to create a

ustomized contract. The following example illustrates a
ontract clause in a sales contract template, where the
rackets identify template variables in the clause.

“The PURCHASER shall send a Letter of Credit
for the GOODS to the SUPPLIER in the currency
of [] within [] days of the invoice date. The
SUPPLIER shall on receipt of the Letter of Credit
ship the GOODS to the PURCHASER within []
days and provide the PURCHASER with shipment
details.”

We have done some preliminary work [9] on the

easibility of modeling composite e-contracts based on

3 $17.00 (C) 2003 IEEE 1

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
cross-organization workflows with workflow views. We
have also studied the engineering of e-contracts for its
enactment [4][5]. During these studies, we identified an
acute need for a concrete methodology that allows an e-
contract to be seamlessly analyzed from its textual
documentation to its enforcement over the Internet. To
address this, we propose to structure an e-contract in
multiple levels and perspectives, viz., document layer,
business layer and implementation layer. Conceptual
models of these layers can be expressed uniformly in the
Unified Modeling Language (UML), a widely accepted
notation in object-oriented modeling [22]. We believe that
the life cycle of an e-contract should be similar to that of
a software system, i.e., definition, analysis and
realization. This approach facilitates the understanding of
an e-contract from its fundamentals to its implementation,
which has been illustrated in earlier works [4].

A crucial task of this kind of implementation is the e-
contract enforcement, in particular the monitoring, which
has not been adequately addressed in the literature. We
distinguish contract enforcements that address concerns
about “what” is to be fulfilled in a contract from contract
enactment that is concerned with “how” to fulfill a
contract. The former deals with the detection and
handling of contract breaches and exceptions while the
latter deals with “normal” enactment of business
processes. As such, contract enforcement can be
considered as a conformance testing of contract
enactment against a contract from a software engineering
viewpoint. This problem is particularly challenging,
among other electronic contracting activities, as it
involves monitoring the enactment of business processes
in counter parties outside an organization’s boundary.

The contributions and coverage of this paper are: (i) a
meta-model of e-contracts and e-contract templates, (ii) a
three-layer architecture for cross-organizational e-contract
enforcement, (iii) a methodology for elicitation of e-
contract enforcement based on this multiple layer
architecture, and, (iv) a feasible implementation outline
for e-contract enforcement with Enterprise Java Bean
(EJB) and Web services.

1.1. A Three-layer Architecture for E-Contract
Enforcement

An e-contract defines clearly the requirements of
business processes and the roles to be played by the
parties involved. This definition is subject to analysis that
aims to (a) identify the relations between the involved
business entities, (b) the events or actions that take place
in different parts of the business processes, and (c) the
exceptions and possible contract breaches that may arise.
Finally an e-contract is realized and enacted using
existing Internet technologies, such as Web services [23]
and EJB [27].
 0-7695-1874-5/0
Depending on their job responsibilities, users across
an organization may have different perspectives regarding
an e-contract. For example, an implementation model of
an e-contract that contains details of an implementation in
Web services may not provide managers with information
at the right level of abstraction. Instead, a business layer
with information about rules and actions is more
appropriate. It is more relevant to a system analyst who
needs to refine an e-contract into a system design for
subsequent enforcement. To allow for reusability and
extensibility, a layered architecture of e-contracts is
formulated in an object-oriented model using UML.

Layer Artifacts
Document Meta-model for e-contracts and

templates:
Contract clauses (Obligation,
Permission, Prohibition) and Parties

Business Meta-model for e-contract
enforcement:
Business events, Business rules,
Business actions and Business entities

Implementation Action implementation (Enterprise
JavaBeans components)
Cross-organizational interface (Web
services XML schemas)

Table 1: An Architecture for E-Contract Enforcement

In the document layer, contracts are composed of
different types of clauses, which typically include
obligation, permission and prohibition [20]. A complex
contract clause may consist of simpler clauses and relate
to other contract clauses. A contract involves parties,
together with their roles in the contract. The document
layer corresponds to our meta-model for e-contracts and
templates as detailed in Section 2.

The business layer of an e-contract specifies an e-
contract from a business process point of view. It
comprises four parts, viz., business rules, business events,
business actions and business entities. Business rules
specify the clauses of the contract in an ECA-rule
paradigm. These rules are triggered by business events.
Business actions capture the details of the activities
required in the contract, including the set of roles
involved in each activity and its consequences in terms of
generated resultant events. Business entities are the set of
data objects (including documents, etc.) relevant to the e-
contract. The business layer will be revisited in more
detail in Section 3.

The implementation layer of an e-contract
enforcement comprises two parts, viz., action
implementation, and cross-organizational event interface,
and is based on contemporary Enterprise Java Bean (EJB)
[27] and Web services [10] technologies. We choose the
implementation of each action to be carried out by

3 $17.00 (C) 2003 IEEE 2

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
computer systems for e-contract enforcement in EJB
components because it supports three-tier
implementation, is highly object orientated and
component based, and is available for any platform. For
the cross-organizational event interface, we employ Web
services [10] interface definitions for the required
communications and interactions, in which XML schemas
[30] among business entities are designed for this
purpose. The advantage of using Web services is to
establish cross-organizational collaboration via existing
Internet standards, supporting both human web-based
interactions and automatic programmed interactions. The
implementation layer is detailed in Section 5.

A summary of our three-layer architecture of e-
contract enforcement is given in Table 1. The rest of our
paper is organized as follows. Section 2 introduces our
meta-model for electronic contracting. Section 3 presents
the requirements for e-contract enforcement together with
a system architecture and meta-model to facilitate this.
Section 4 presents the transformation of e-contract clauses
in the document layer to contract enforcement rules in the
business layer. Section 5 discusses the implementation
layer based on Web services and EJB, followed by a
comparison with related work in Section 6. Finally, we
conclude the paper with ongoing research work in Section
7.

2. A Meta-model for Electronic Contracting
Let us first introduce a meta-model for e-contracts in

UML [22] and then discuss the lifecycle of an e-contract.

2.1. A Meta-model of E-Contract Templates in
UML

UML is a modeling language for visualizing,
specifying, constructing, and documenting the artifacts
based on an object-oriented paradigm. The language
offers a standard way to write a system's blueprints,
including conceptual things such as business processes
and system functions as well as concrete things such as
programming language statements, database schemas, and
reusable software components [22].

Figure 1 presents our meta-model of an e-contract
template that forms the basis on which an e-contract is
refined. A template consists of a number of contract
clauses; each concerns some of the parties to be bound by
the e-contract. Typical contract clauses can be divided
into three types of contractual constraints: obligation,
permission and prohibition [20]. For example, a customer
is obliged to pay according to the payment terms and a
supplier is not allowed to cancel the order once
committed. A complex contract clause may consist of
several simpler clauses or refer to other clauses. In an e-
contract template, a contract clause may contain a number
of template variables, such as the product, price and
 0-7695-1874-5/0
quantity. For each contract instance, these variables are to
be refined in an e-contract through negotiations and
finally agreed upon a set of accepted values.

e-Contract
Template

*

1

1..*
Template
Variable

2..*

involves

*

refines

Obligation Permission Prohibition

e-Contract Party

Contract
Clause

references

Accepted
Value

1

Figure 1: Meta-Model of an E-Contract Template in UML

Based on the previous contracts prepared and
experience, a business can abstract common clauses and
differentiate the parameters to create contract templates,
according to this meta-model. This template provides a
basis on which the whole contract lifecycle, as described
in the next section, may take place. The most common
contract being used in business is probably a sales
contract. Figure 2 gives an example sales e-contract
template instantiated from the meta-model in Figure 1.
The sales e-contract consists of four contract clauses;
each in turn contains one or two template variables. For
example, unit price, quantity and delivery date are
variables.

Sales
:e-Contract Template

Shipping & Insurance
:Contract Clause

Pricing
:Contract Clause

Delivery
:Contract Clause

insurance premium
:Template Variable

freight
:Template Variable

quantity
:Template Variable

delivery date
:Template Variable

return policy
:Template Variable

unit price
:Template Variable

Deposit Payment
:Contract Clause

deposit
:Template Variable

Purchaser
:Party

Supplier
:Party

involves involves

Figure 2: A Sales E-Contract Template as an Instance of the

Meta-model in Figure 1

2.2. E-Contract Lifecycle
For each e-contract, the whole lifecycle of electronic

contractual activities (as illustrated in Figure 3) involves
not only contract enactment and contract enforcement, but
also pre-contract activities, such as exchanging business
information and contract negotiation. Exchanging
business information includes advertisement activities of
the service provider (push mode) and information

3 $17.00 (C) 2003 IEEE 3

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
collection and comparison by potential customers (pull
mode). This can be performed via electronic platforms
such as electronic marketplaces, portals, and brokers.

Once a customer and a service provider identify each
other, negotiation is carried out. Negotiation is a decision
process in which two or more parties make individual
decisions and interact with each other for mutual gain.
We have proposed a contract template driven approach to
this process [7], involving the negotiation of template
variables, in order to avoid uncontrolled openness of
issues, thus improving the effectiveness of negotiation.

Business
Information
Exchange

Contract
Enactment

Contract
Enforcement

Contract
Negotiation

Figure 3: E-Contract Lifecycle

3. E-Contract Enforcement
In this section, we first discuss the requirements for e-

contract enforcement. Then we introduce our enforcement
architecture and give an overview of the transformation
process towards an implementation for e-contract
enforcement, focusing on the monitoring part.

3.1. Requirements for E-Contract Enforcement
The enforcement of a contract consists of two main

issues, viz., the recognition and the handling of contract
breaches. In order to recognize a contract violation, the
compliance of a contract has to be kept under constant
surveillance. Otherwise, contract violation cannot be
recognized and the aggrieved party cannot react to the
breach. How this breach should be handled depends on
the aggrieved party and on the degree of the damage. The
form of reaction ranges from ignoring the breach via
invoking an exception rule through to a human
intervention. Enforcement can be summarized by:
enforcement is monitoring plus handling.

As mentioned above, an e-contract is composed of
clauses. Each clause represents one of the three types of
contractual constraints, viz., obligation, prohibition and
permission. A contract defines the responsibilities and
duties of the involved parties of a business process.
Clauses state conditions where exceptions occur.
Therefore they are used to cross check and to enforce the
mutual agreement of the different business parties. In
order to enforce an e-contract, many variables such as the
status of delivery or the response time of an e-service
have to be monitored. These variables may include
confidential information, for example, balances of bank
accounts or credit cards’ numbers. One approach is to
 0-7695-1874-5/0
launch an enforcement service that constantly checks the
validity of all these variables (according to the contract
clauses). However, this incurs tremendous overheads to a
system, and this mechanism is not practical to be
extended across organizational boundaries. Alternatively,
motivated by active database paradigms [11], the
transformation of contract clauses into ECA rules can
systematically reduce the monitoring effort. Now the
monitor becomes only active when an interesting event
occurs. Interesting events are to be raised by each party or
some information sources. The demand of resources to
enforce the contract is greatly reduced by using ECA
rules because the amount of surveyed variables at one
time is much less and the monitoring software is not
permanently active.

It should be noted that information provided by
sources, which are not directly involved in the contract,
might be of interest to one of the contract partners, e.g., a
news channel broadcasts a message about an earthquake
in Taiwan that has damaged a semiconductor factory.
This is particularly important to a computer manufacturer
because the prices for chips, in particular memory chips
and microprocessors, may rise soon. In that case, the
manufacturer may decline to accept large orders based on
an old price.

3.2. An Architecture for Cross-Organizational E-
Contract Enforcement

Contract Enforcer Contract Enactor

Event Adapter

External Web Service Interface

Event Ev
ent

A Party as
an e-Service

Provider

Database
Event Repository

Event Subscribers List
Business Entities

Internet

Ev
en

t

Event

Ev
en

t

Other Parties

Timer Even
t

Figure 4: An Architecture for Cross-Organizational E-Contract

Enforcement

Figure 4 depicts an architecture for cross-
organizational e-contract enforcement based on the
requirements discussed in the previous subsection. Each
e-service provider hosts a contract enactor subsystem to
perform regular business activities for service contract
enactment. It also hosts a separate contract enforcer
subsystem to detect contract breaches and to trigger
relevant business actions upon such breaches (or other
exceptions). Events are published and subscribed through
an event adapter. The event adapter collects internal
events from the contract enactor and external events from
the external Web service interface. Events collected are
filtered and transformed to a structure accepted by the
event enforcer. Temporal events are generated by a Timer
subsystem. In addition, each party maintains a database,

3 $17.00 (C) 2003 IEEE 4

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
which stores the business entities, event repository (event
log) and event subscriber lists. The advantage of this
architecture is its support of a flexible peer-to-peer model.
It does not require a central facilitator or moderator.

3.3. A Meta-model of Contract Enforcement
Figure 5 presents our meta-model for cross-

organizational contract enforcement in UML. A business
process can be modeled as a set of actions to be executed
by a set of parties, each playing certain roles in the
process. Typically, an action is recursively decomposed
into sub-actions and eventually down to a unit level called
tasks. In subsequent discussions, an action is a workflow
or sub-workflow that is performed by a single party. For
example, the action Check System Config is carried out by
the system integrator. It consists of two tasks: (i) to
receive a quotation request from an end user and (ii) to
validate the system configuration required in the request.
The parties in a cross-organizational workflow may
belong to different organizations.

Rule+precondition

triggers
1..*

*
*

Role

Party

involves

plays*

*

executes

+action

+publisher

+subscriber

* *

*

1

Business
Entity

1

*

ownsbased on

Event
+internal event

Temporal
Event

+external event

1

Enforcement
Action carries out

1

*

*

*

*

1

*

*

*
enforces

Business
Action

InvocationException

Contract Clause

Condition

updates

Figure 5: A Meta-model of Contract Enforcement in
UML

An event occurs when something of interest happens
to the system itself or to the user’s applications. The
source of events can be internal or external. An internal
event originates within the organization that receives the
event, while an external event originates from another
organization. Examples of external events include the
receipt of a request for quotation or of a purchase order.
When an event occurs, it triggers some rules and the
condition parts of these rules will be evaluated.
Conditions are logical expressions defined on the states of
business entities, such as the status of an order. Only if
the condition is satisfied, the enforcement action part,
which is a workflow, will be executed and may lead to
other events, such as exceptions. The semantics of ECA
rules for contract enforcement can be summarized as the
following: On event if condition then enforcement action.

In a cross-organizational context, when an
organization detects an internal event, it must explicitly
 0-7695-1874-5/0
send the event to other target organizations in order to
notify them. This event is then considered to be an
external event of each target organization. However, the
target organizations must have subscribed for it
beforehand. Examples of such events include change in
delivery date or change in price. It should be noted that
the subscription can be implicit. For example, placement
of an order implies a subscription to the event of change
in delivery date, as this is an obligation of the supplier.

Data required in the business process are encapsulated
by business entities owned by some party participating in
the workflows. The enforcement actions in the rules may
update the state of these business entities, which in turn
may trigger other events. Note that exceptions are special
events, which deviate from normal expected behavior or
prevent normal process execution. A business process
often defines extra rules describing exceptions and their
handling, and in our context, for contract enforcement.
Actions may also be triggered by time-related elements,
such as deadlines and durations. These elements can be
represented by temporal events in the meta-model. In
addition, business action invocations, such as those, that
could possibly breach a contract (cf. section 4.2 on
enforcing prohibitions), are also modeled as events in the
meta-model.

4. E-Contract Enforcement Business Rules -
from Contract Clauses to ECA Rules

To facilitate enforcement, contract clauses expressed
in a format based on the meta-model in Figure 1 are
analyzed and then transformed into a set of ECA rules,
based on the meta-model in Figure 5. This set of ECA
rules collectively formulates an operational model of the
contract clauses for subsequent enforcement. We
conducted a study based on a service agreement referred
to as the “Terms and Conditions of Sale, Service and
Technical Support” at the official website of Dell (Hong
Kong) [12]. In this agreement, Dell plays the role of a
system integrator and the customer the role of an end
user.

Enforcement
rule

Clause type
Event Condition Action

Obligation
onDay(

deadline(
BAO))

NOT occurred(BAO)

Prohibition prohibitionCondition
(BAO)

Permission

onOccurred(

BAO)
 NOT permitted(BAO)

ra
ise

(
ex

ce
pt

io
n(

 B
AO

)
)

Table 2: Basic Mapping of Contract Clauses into ECA rules

Table 2 summarizes our methodology to map different
types of contract clauses into enforcement ECA rules,

3 $17.00 (C) 2003 IEEE 5

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
which will be detailed in the following subsections. BAO
stands for an object that encapsulates a business action
whose execution triggers the object creation. Our
methodology helps discover some typical problems that
arise from the ambiguity of natural language and the
autonomous nature of individual organizations. We also
suggest some measures to overcome them during the
discussion.

After the involved parties have agreed to a contract,
analysis is conducted. The analysis is driven by a
methodology mapping the three contractual constraint
types of contract clauses, i.e., obligations (what a party
must do), prohibitions (what a party must not do) and
permissions (what a party can but is not obliged to do),
into ECA rules. Common contractual wordings may
provide additional hints in the analysis to identify the
constraint type of a contract clause. For example, the term
“shall” tends to imply an obligation, “may” a permission
and “shall not” a non-obligation, i.e., a prohibition or a
permission. Since natural language formulations
(particularly in contracts) can be multifarious, further
analysis in the clause structures is often necessary.

An alternative is to map these rules into a set of
logical expressions in deontic logic, a class of formal
logic [20]. A rule of deontic logic has the following
formal structure:

Rule #: <role> [is] (obligated | forbidden| permitted)
[to] [do] (<action> [before <condition>] |
satisfy <condition>) [, if <condition>][, where
<condition>] [, otherwise see Rule <#>]

Unlike ECA rules, deontic logic was not designed to
be executable and therefore not associated with well-
defined operational semantics. For instance, the triggering
event for an action is often omitted, making it difficult to
determine the execution of logical expressions. In
addition, the deadline of an action or a task is often not
stated. However, this is important for the enforcement of
obligations; otherwise a party may defer the obliged
action indefinitely. An obligation without stating a
deadline or an event before which the obliged action must
have taken place may even imply enforcement is
inapplicable. Sometimes, the deadline is implied due to
standard practices of the business, governmental
regulation, etc., and must be added explicitly by the
analyst. All these kinds of ambiguities, once found,
should be clarified and confirmed by both parties to avoid
confusion or later unnecessary disputes, and should not
simply be left in a rule.

4.1. Enforcing Obligations
Consider an ECA rule Robl that formulates an

obligation where a business action Aobl must be performed
by a deadline Tobl. The obligation can be enforced using
 0-7695-1874-5/0
the following mechanism. Upon reaching the deadline
Tobl, a temporal event is generated by the Timer. This
triggers the contract enforcer to fire rule Robl and execute
the enforcement action to check if the obliged party has
performed the required business action Aobl. This check
can be achieved by, as for example, searching the log file
for invoked actions or occurrence of related events. In the
case of payment obligations, suitable events could be the
acceptance of a payment receipt or a change in a bank
account’s balance. If the obligation has not been fulfilled,
the contract enforcer raises an exception. Based on this
mechanism, ECA rules for obligation enforcement can be
formatted using the following predicates. Here, BAO is an
object encapsulating the required business action with a
deadline, denoted as deadline(BAO). A temporal event is
generated on the date of deadline, denoted as
onDay(deadline(BAO)). The predicate occurred(BAO)
holds if the business action has occurred. An exception,
denoted as exception(BAO), is raised as a result of the rule
execution.

E: onDay(deadline(BAO))
C: NOT occurred(BAO)
A: raise(exception(BAO))

An ECA Rule
for Obligation
Enforcement

For example, for the contract clause: “7.1 Dell shall
deliver the Products to the place of delivery designated by
Customer and agreed to by Dell as evidenced in
Customer’s invoice (“Place of Delivery”)”, the
corresponding enforcement ECA rule can be:

E: onDay(deadline(DELIVER))
C: NOT occurred(DELIVER)
A: raise(exception(DELIVER))

The customer could monitor this obligation by
checking the list of products delivered before and on the
delivery date, denoted as deadline(DELIVER) in the
rule. However, problems may arise if Dell has already
sent the products but due to certain circumstances, they
have not reached the customer yet. In this case, Dell could
prove the product delivery, as for example, by providing
the tracking number of the sent package. In fact, this
should be done as soon as the package is sent, in order to
improve customer relationships.

As mentioned above, there are two sets of ECA rules
necessary to implement an e-contract - for the
enforcement and for the enactment. Enactment rules are
triggered to invoke necessary actions on time, while
enforcement rules are triggered once deadlines of
obligations has been reached. Since an obliged action may
need some time to complete, the action must be triggered
early enough, as for example, six days before the
deadline. The following enactment ECA rule for the same
contract clause illustrates this difference:

3 $17.00 (C) 2003 IEEE 6

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
E: onDay(before(deadline(DELIVER), 6))
C: valid(place(DELIVER)) & ready(DELIVER)
A: perform(DELIVER)

We conclude this subsection by discussing a general
problem of the impreciseness of natural languages.
Phrases like “as soon as practicable” or “as soon as
possible” are imprecise, lacking a concrete deadline. The
handling of such ambiguity generally requires human
attention. The analyst has to substitute these with concrete
deadline in the formulation of ECA rules. For instance,
consider the contract clause “10.7 …Dell shall respond to
a request for such Emergency Service as soon as
practicable after its receipt of such request. …” The
corresponding enforcement ECA rule can be formulated
in the following. Here, N is a chosen time allowance.

E: onDay(after(receiptDate(
EMERGENCY_REQUEST), N)))

C: NOT responded(EMERGENCY_REQUEST))
A: raise(exception(EMERGENCY_REQUEST))

4.2. Enforcing Prohibitions
The occurrence of a prohibited action (or prohibition)

should be treated as an exception by the contract enforcer.
Our meta-model in Figure 5 supports this scenario
without any extension. One problem of the observation of
prohibitions is that if a party performs a prohibited action,
the party will probably try to hide or distract this fact as
long as possible (unless the party does this by mistake or
misunderstandings). Thus, in general, it will be quite
difficult to observe or to recognize a prohibited action.
Should it be easy to detect such an event of a prohibited
action, the party probably would not invoke this specific
action. This is a problem due to the autonomous nature of
different organizations rather than that of our architecture
or our model. A general ECA rule for prohibition
enforcement can be described as follows:

E: onOccurred(BAO)
C: prohibitionCondition(BAO)
A: raise(exception(BAO))

Consider the contract clause “14. Each party shall
treat as confidential all information obtained from the
other pursuant to a Contract which is marked
’confidential’ or the equivalent or has the necessary
quality of confidence about it and shall not divulge such
information to any persons without the other party’s prior
written consent provided that this clause shall not extend
to information which was rightfully in the possession of
such party prior to the commencement of the negotiations
leading to the Contract, …” For example, a
corresponding enforcement ECA rule can be:

E: onOccurred(INFO)
C: confidential(INFO)
 0-7695-1874-5/0
A: raise(exception(INFO))

However, if a party really passes confidential contract
information to a third party, this is almost impossible to
detect. Thus, the event “onOccurred(INFO)” is non-
monitorable. On the other hand, Dell has a similar
problem. Another contract clause states that the customer
warrants buying the products only for its own internal use
and not for re-sale. But Dell cannot easily check if the
end-user buys the product for itself or to resell it to a
third-party.

4.3. Enforcing Permissions
A permission is a temporary allowance to perform an

otherwise prohibited action, i.e., a specific action may be
carried out only within a certain allowed time period.
Some actions may be permitted under specific situations
(i.e., events plus conditions). Note that a party is not
obliged to carry out a permitted business action. After the
message of the invocation of a permitted action is
received, the contract enforcer checks if the conditions for
the permission are met or not. If the permission situations
are not met, the contract enforcer raises an exception.
Whether the actual action invocation will be interrupted
or not depends on the exception handler. A general ECA
rule for obligation enforcement can be formulated as
follows:

E: onOccurred(BOA)
C: NOT permitted(BOA)
A: raise(exception(BOA))

For example, consider the contract clause “2.1 … Dell
shall be entitled to refuse to accept orders placed by the
Customer if the Customer breaches or Dell, on
reasonable grounds, suspects that the Customer will
breach this warranty.” A corresponding ECA-rule can be
stated as follows where REFUSE_ORDER is the action
object encapsulating the business action “refuse order”.

E: onOccurred(REFUSE_ORDER)
C: NOT badlisted(customer(REFUSE_ORDER))
A: raise(exception(REFUSE_ORDER))

The event onOccurred(REFUSE_ORDER) can be
observed by the customer upon the receipt of a order
cancellation message. But the customer may have
problems in understanding the applicability of the
condition, as the internal criteria of Dell for trustable
customer is not disclosed to the public.

Consider another contract clause “3.1 Dell may, at its
sole discretion, allow a Customer to cancel its order after
acceptance at no charge, if written notice of such
cancellation is received by Dell before commencement of
manufacture of the Products. If Dell allows a Customer to
cancel its order after manufacture but before shipment of
the Product, Dell shall be entitled to levy a cancellation

3 $17.00 (C) 2003 IEEE 7

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
charge equal to 20% of the price of the Products.” The
clause may be formulated by the following ECA rule. The
business action “levy cancellation charge” is encapsulated
by an action object LEVY.

E: onOccurred(LEVY)
C: NOT (dateOfCancellation(order(LEVY)) >

dateOfManufacture(order(LEVY)) &
cancellationApproved(order(LEVY)))

A: raise(exception(LEVY))

A customer can hardly tell whether the
commencement of manufacture of the product has already
started when canceling the order. It is almost non-
monitorable because normally a customer does not have
access to such kind of internal data. However, Dell may
improve the situation by informing the customer when the
commencement starts through its enactment system. As
such, the monitorability / enforceability of this specific
permission would change from non-monitorable to
monitorable.

4.4. Discussion
In this section, we have presented a methodology to

map different types of contract clauses into enforcement
ECA rules. We have also highlighted typical problems
that can be discovered by our methodology, together with
some measures of overcoming them. However, it is not
possible to suggest general measures to handle contract
breaches or exception, as these often involves domain
specific knowledge, which are either explicitly specified
in other contract clauses or implicitly regulated by laws
and standards.

Some of the problems in analyzing contracts arise
from ambiguity and impreciseness of natural languages.
These might be sought out with reference to other laws,
regulations, standard trade practices, etc. However, to
avoid unnecessary disputes, the parties involved should
discuss and clarify the matter, and if necessary, amend
existing or forthcoming contracts accordingly.

Other problems arise from the autonomous nature of
individual organizations. Events that need to be
monitored often come from counter parties in other
organizations, and might not be monitorable. Thus,
cooperation and trust should be developed among trade
partners to alleviate this problem. In general, this
improves the transparency of operations, services, and in
turn, customer relationships [8], and is therefore vital in
contemporary e-service providers under strong
competitions. On the other hand, such events may be
made monitorable by adding explicit clauses in the
contract to demand the provision of such events among
the parties where appropriate. Alternatively, trade
standards or e-services standards should be established
accordingly to minimize such efforts and to streamline
 0-7695-1874-5/0
fair and effective monitoring of e-service provision in the
digital economy.

5. An Implementation Outline for E-Contract
Enforcement

Web services can be used to interface different
enforcement and enactment systems within and across
organizations by supporting appropriate cross-
organizational communication and interoperability. In this
section, we outline the implementation of cross-
organization interfaces for e-contract enforcement
through Web services. Details of e-contract enactment
using Web services can be found in our previous work
[4]. Based on the functional and data requirements of the
event adaptor, three Web services, viz., for publishing
events, for receiving events, for subscribing events, are
identified as shown in Figure 6. Examples of these Web
services are summarized in Table 3.

Web
Services
Manager

Event
Adapter

publish

subscribe

receive

notify

Database

Event Repository
Subscribers List
Security Policies

Web
Services
Manager receive

event

event

event

event

Counter Party Party

requestsubscribe

request

request

interface

depend

event

subscription
request

component

NOTATIONS

Figure 6: Web Services Implementation of an E-Contract

Enforcement System

The publish Web service will be invoked by the event

adaptor. The input parameter is the occurred event or
exception. Based on this, the Web service checks the
subscribers list and the security policies, and then notifies
the valid subscribers. Notification can be performed via
different kind of protocols like e-mail, fax, ICQ message,
or even via another Web service. How the subscribers
should be notified is specified in the subscription process
via the subscribe Web service. The subscribe Web service
registers requests for an event subscription including
several parameters such as the requester, the subscribed
event, and how the requester wants to receive the event
notification. The receive Web service is used to receive
subscribed events published by the counter party
organizations. Received events are recorded at the Event
Repository and forwarded to the Event Adapter, which in
turn transforms them into the forms as required by the
Contract Enforcer and the Contract Enacter in Figure 4.

In addition, a system integrator can offer more
specific Web services like takeOrder or trackOrder as
shown in Table 4. In order to provide a better service and

3 $17.00 (C) 2003 IEEE 8

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
to increase the trust between the involved parties, the
trackOrder Web service can be composed with another
trackDelivery service, so that customers may acquire all
necessary information from one provider.

Publish Web Service
Input: EventReceiving
Acknowledge

• EventReceiving
Acknowledge

Output: EventMessage
• Date
• Sender
• Receiver
• Event

o Event name
o Event type
o Event subject
o Event message

body
o Prio

Subscribe Web Service
Input: SubscriptionRequest
• Eventprovider
o Name
o Address
o E-Mail

• SubscribedEvent
• NotificationParameter
o transmissionPort

TransmissionParameter
(like email | fax | icq no. |...)

Output: SubscriptionResponse
• SubscriptionResult

Receive Web Service
Input: EventNotification

• Date
• Sender
• Receiver
• Event
o Event name
o Event type
o Event subject
o Event message body

• Prio
Output: EventReceivingResponse
• EventReceivingAcknowledge

Table 3: Sample Web Service Specifications for Contract
Enforcement

takeOrder Web Service
Input: OrderRequest

• Buyer
o Name
o Address
o E-Mail

• ProductList
o Product

• Product ID
• Product Name
• Quantity
• Price

Output: OrderResponse
• OrderResult

o OrderNr
o Password
o Estimated Delivery Date

trackOrder Web Service
Input: OrderStatusRequest

• OrderNr
• Password

Output: OrderStatus
• Progress
• Estimated Delivery Date
• Optional: DeliveryNr

Table 4: Other Possible Web Services for Contract Enforcement

6. Related Work
Modeling of e-contracts can be dated back to the

Contract Net Protocol [25]. However, they only
concentrated on low-level transaction aspects. Gisler et al.
[14] presented an architecture for legal e-contracts, but
not a mechanism for modeling e-contracts. Grosof [18]
introduced a declarative approach to business rules in e-
commerce contracts by combining Courteous Logic
Program and XML. Tan and Thoen proposed a conceptual
view to represent the contents of business contracts with
Formal Language for Business Communication (FLBC)
for contract negotiation based on the event semantics.
Marjanovic and Milosevic [20] modeled a contract with
deontic logic, based on obligation, permission and
prohibition. They proposed a contract monitoring
mechanism through a trusted third party instead of a peer-
to-peer model. Recently, Karlaplem et al. [19] proposed a
meta-model of e-contracts with entity-relationship
diagrams for generating workflows to support e-contract
enactment, but they did not address enforcement issues.

Though there are many web-enabled WFMS research
prototypes ([2], [21]) and commercial products ([3], [28],
[25], [13], [18]), few of them address problems in e-
 0-7695-1874-5/0
contracts or cross-organizational workflow
comprehensively. We have done some work on the E-
ADOME [9] system, which proposed a novel concept of
workflow view for cross-organizational workflow
interoperability and e-contract development. We are also
deriving a methodology for extending workflows beyond
organizations by analyzing information (data plus events)
requirements in a Web service environment [5].

CrossFlow [16] models virtual enterprises based on a
service provider-consumer paradigm, in which
organizations (service consumers) can delegate tasks in
their workflows to other organizations (service providers).
However, it does not observe contract provisions in legal
context aspects. Furthermore, because it does not support
ECA rule based on cross-organizational events and just
can monitor workflow status (such as the start or the end
of a task), frauds cannot be observed easily. The
COSMOS project (Common Open Service Market for
SMEs) [17] have developed Internet-based electronic
contracting services to facilitate business transaction
processes based on CORBA (Common Object Request
Broker Architecture [24]). E-contracts are modeled as a
combination of objects, which can be exchanged among
different parties and stored in XML. Though workflow
based contract enactment can be facilitated with another
explicit flow-model, contract enforcement issues are not
addressed..

In summary, previous work addressed either only
specific portions of the e-contract enactment process
without focus on enforcement aspects, or just some of the
supporting facilities required for e-contract enforcement.

7. Conclusions
This paper has presented a meta-model for e-contracts

and templates. We have also detailed a pragmatic
architecture for cross-organizational e-contract
enforcement comprising three layers, viz., document
layer, business layer, and implementation layer. To
demonstrate the feasibility of our architecture, we have
presented an architecture and a methodology for
developing e-contract enforcement rules, in an e-service
environment, using a supplier’s example. In particular, we
have detailed how to analyze a contract at the document
layer to define e-contract enforcement rules at the
business layer. We have also highlighted typical problems
that can be discovered by using our methodology,
together with some measures of overcoming them. We
finish our discussion with an outline of the
implementation layer, which is facilitated by
contemporary standard software technologies of EJB and
Web services. As such, the development of a system for
e-contract enforcement across organization boundaries

3 $17.00 (C) 2003 IEEE 9

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
can be streamlined in the context of e-service providers
and consumers.

At the same time, we are working on further details of
process adaptation for interoperability, e-contract
negotiation [6], methodologies for preventive measures
avoiding contract breaches, and the use of workflow
management systems for the whole e-contract lifecycle
[7]. On the other hand, we are interested in the application
of e-contracts and customer relationships management [8]
in various advanced real-life e-service environments, such
as supply-chain, procurement, finance, stock trading and
insurance. We are developing a more unified way to
exchange information, including workflow views, with
other agents, through Web services.

Acknowledgment
The work is partially supported by the Hong Kong

Research Grant Council with the research grant (ref.
HKUST6187/02E).

References
[1] S. Abiteboul, A. Bonner. Objects and Views. In Proceedings

of ACM SIGMOD Conference, pp. 238-247, 1991.
[2] T. Cai, P.A. Gloor, S. Nog, “DartFlow: A Workflow

Management System on the Web using Transportable Agents”,
Technical Report PCS-TR96-283, Dartmouth College,
Hanover, N.H., 1996.

[3] F. Casati, et al. Adaptive and Dynamic Service Composition in
eFlow. HP Lab’s Technical Report HPL-2000-39, March
2000.

[4] S.C. Cheung, D.K.W. Chiu, S. Till. A Three-Layer
Architecture for Cross-Organization E-contract enactment. In
Proceedings of Web Services, E-business and Semantic Web
Workshop, (In conjunction with CAiSE 2002), May 2002.

[5] S.C. Cheung, D.K.W. Chiu, S. Till. A Data-driven
Methodology to Extending Workflows across Organizations
over the Internet. 36th Hawaii International Conference on
System Sciences (HICSS36), Jan 2003.

[6] S.C. Cheung, P.C.K. Hung, D.K.W. Chiu, On the e-
Negotiation of Unmatched Logrolling Views, in the
Proceedings of the 36th Hawaii International Conference on
System Sciences (HICSS-36), Jan 2003.

[7] D.K.W. Chiu, S.C. Cheung, P.C.K. Hung, A Meta-model for
Contract Template Driven e-Negotiation Processes, in the
Proceedings of 6th Pacific Asia Conference on Information
Systems (PACIS'02), Tokyo, Japan, September 2002, pp. 854-
868.

[8] D.K.W. Chiu, W. C. W. Chan, G. K. W. Lam, S. C. Cheung
and F. T. Luk. An Event Driven Approach to Customer
Relationship Management in an e-Brokerage Environment.
36th Hawaii International Conference on System Sciences
(HICSS36), Jan 2003.

[9] D.K.W. Chiu, K. Karlapalem, Q. Li, E. Kafeza. Workflow
Views Based E-Contracts in a Cross-Organization E-Service
Environment. Distributed and Parallel Databases, Kluwer
Academic Publishers, 12(2-3):193-216, 2002.

[10] V. Chopra, Z. Zaev, G. Damschen, F. Norton, C. Dix, P.
Cauldwell, R. Chawla, K. Saunders, G. Olander, T. Hong, U.
Ogbuji, M. Richman. Professional XML Web Services, Wrox
Press, 2001.
 0-7695-1874-5/0
[11] U. Dayal. Active Database Management Systems. Proc 3rd
International Conference on Data and Knowledge Bases, pp
150-169, 1989.

[12] http://www.ap.dell.com/ap/hk/en/gen/local/legal_terms.htm
[13] Enix Consulting Limited. An Independent Evaluation of i-

Flow Version 3.5, 2000 (available at http://www.i-flow.com).
[14] M. Gisler, K. Stanoevska-Slabeva, M. Greunz, Legal Aspects

of Electronic Contracts, In CAiSE*00 Workshop of
Infrastructures for Dynamic Business-to-Business Service
Outsourcing (IDSO'00) Stockholm, 5 - 6 June 2000; pp.53-62.

[15] A. Goodchild, C. Herring and Z. Milosevic. Business
Contracts for B2B. In Proceedings of the CAiSE*00 Workshop
of Infrastructures for Dynamic Business-to-Business Service
Outsourcing (IDSO'00) Stockholm, 5 - 6 June 2000; pp. 63-74.

[16] P. Grefen and Y. Hoffner. Crossflow – Cross-Organizational
Workflow Support for Virtual Organization. In Proc of the
Ninth International Workshop on Research Issues on Data
Engineering: Information Technology for Virtual Enterprises
(RIDE’98), 1998; pp. 90-91.

[17] F. Griffel. Electronic Contracting with COSMOS – How to
Establish, Negotiate and Execute Electronic Contracts on the
Internet. 2nd Int. Enterprise Distributed Object Computing
Workshop (EDOC '98), pp. 46-55, 1998.

[18] B. N. Grosof, A declarative approach to business rules in
Contracts: Courteous Logic Programs in XML, Proceedings of
the 1st ACM Conference on Electronic Commerce (EC99),
Denver, Colorado, USA, Nov. 3-5, 1999; pp. 68-77.

[19] K. Karlaplem, A. R. Dani and P. R. Krishna. A Frame Work
for Modeling Electronic Contracts. International Conference
on Conceptual Modeling (ER2001). pp. 193-207, Nov 2001.

[20] O. Marjanovic, and Z. Milosevic. Towards formal modeling of
e-Contracts, Proceedings of 5th IEEE International Enterprise
Distributed Object Computing Conference, pp. 59 –68, 2001.

[21] John A. Miller, et al. Recovery Issues in Web-Based
Workflow. Proceedings of the 12th International Conference
on Computer Applications in Industry and Engineering
(CAINE-99), pp. 101-105, Atlanta, Georgia Nov. 1999.

[22] Object Management Group. Foreword UML specification 1.4,
September 2001.

[23] N. Sankaran. Building Web service applications. Windows
Developers Journal, 12(10): 8, 12-13, 16-18. Miller Freeman,
USA, Oct. 2001.

[24] J. Siegel. CORBA 3 Fundamentals and Programming, 2nd
Edition, Wiley, 2000.

[25] R. G. Smith. The contract net protocol: High Level
Communication and Control in a Distributed Problem Solver,
IEEE Transactions on Computers 29(12), December 1980,
1104-1113.

[26] Y.H. Tan, W. Thoen. Using Event Semantics for Modeling
Contracts. Proceedings of the 35th Hawaii International
Conference on System Sciences, pp. 2198-2206, 2002.

[27] http://java.sun.com/products/ejb/index.html
[28] TIBCO Software Inc., which has acquired InConcert Inc.,

http://www.tibco.com
[29] http://vsys-www.informatik.uni-hamburg.de/projects/cosmos/
[30] http://www.w3.org/XML/

3 $17.00 (C) 2003 IEEE 10

	HICSS36 2003
	Return to Main Menu

